Loading...
Haim4这一章节主要讲述$L^p$空间的自反,可分性质和对偶空间1.3自反性,可分性,$L^p$的对偶我们考虑分开下面三个情况:(A)$1<p<\infty$(B)$p=1$(C)$p=\infty$情况A关于$L^p(\Omega),1<p<\infty$的性质有:这个情况是最好的:$L^p$是自反的,可分的且$L^p$的对偶空间是$L^{p'}$。定理4.10$...
Haim4这一章节主要讲述$L^p$空间。令$(\Omega,\mathcal{M},\mu)$给定了一个可测空间,也即:$\Omega$是一个集合且(1)$\mathcal{M}$是一个在$\Omega$中的$\sigma-$代数,也即:$\mathcal{M}$是一个关于$\Omega$中的子集列使得:(a)$\varnothing{\in}\mathcal{M}$。(b)$A{\in}...
Haim3本节主要讲述:弱拓扑,自反空间,可分空间,一致凸性。3.6可分空间定义:我们称呼一个度量空间$E$是可分的:如果它存在一个子集$D{\subset}E$是可数的且稠密的。(存在可数稠密子集)分析中很多重要的空间是可分的。显然,有限维空间是可分的。我们将会在第四章看到,$L^p$与$l^p$空间是可分的(其中$1<p<\infty$)。当然$C(K)$空间也是,在紧度量空...
Haim3本节主要讲述:弱拓扑,自反空间,可分空间,一致凸性。3.5自反空间定义:令$E$为一个巴拿赫空间,且令$J:E{\to}E^{**}$为规范单射从$E$到$E^{**}$。如果$J$是满射则称$E$为自反空间,也即$J(E)=E^{**}$。当$E$是自反的,则$E^{**}$可以用$E$定义。注意:分析中很多重要的空间都是自反的。显然,有限维空间都是自反的(因为$dim{\;}E...
Haim3本节主要讲述:弱拓扑,自反空间,可分空间,一致凸性。3.1一族连续映射的粗拓扑考虑一个拓扑。假设$X$为一个集合,且$(Y_i)_{i{\in}I}$为一族拓扑空间。我们给定一族映射$(\varphi_i)_{i{\in}I}$,使得${\forall}i{\in}I$,有$\varphi_i:X{\to}Y_i$,(给出了从集合$X$到每个拓扑空间$Y_i$的映射$\varphi...